Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum.
نویسندگان
چکیده
In addition to a cytoplasmic, NAD-dependent malate dehydrogenase (EC 1.1.1.37), Corynebacterium glutamicum possesses a highly active membrane-associated malate dehydrogenase (acceptor) (EC 1.1.99.16). This enzyme also takes part in the citric acid cycle. It oxidizes L-malate to oxaloacetate and donates electrons to ubiquinone-1 and other artificial acceptors or, via the electron transfer chain, to oxygen. NAD is not an acceptor and the natural direct acceptor for the enzyme is most likely a quinone. The enzyme is therefore called malate:quinone oxidoreductase, abbreviated to Mqo. Mqo is a peripheral membrane protein and can be released from the membrane by addition of chelators. The solubilized form was partially purified and characterized biochemically. FAD is probably a tightly but non-covalently bound prosthetic group, and the enzyme is activated by lipids. A C. glutamicum mutant completely lacking Mqo activity was isolated. It grows poorly on several substrates tested. The mutant possesses normal levels of cytoplasmic NAD-dependent malate dehydrogenase. A plasmid containing the gene from C. glutamicum coding for Mqo was isolated by complementation of the Mqo-negative phenotype. It leads to overexpression of Mqo activity in the mutant. The nucleotide sequence of the mqo gene was determined and is the first sequence known for this enzyme. The derived protein sequence is similar to hypothetical proteins from Escherichia coli, Klebsiella pneumoniae, and Mycobacterium tuberculosis.
منابع مشابه
Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Corynebacterium glutamicum.
Like many other bacteria, Corynebacterium glutamicum possesses two types of L-malate dehydrogenase, a membrane-associated malate:quinone oxidoreductase (MQO; EC 1.1.99.16) and a cytoplasmic malate dehydrogenase (MDH; EC 1.1.1.37) The regulation of MDH and of the three membrane-associated dehydrogenases MQO, succinate dehydrogenase (SDH), and NADH dehydrogenase was investigated. MQO, MDH, and SD...
متن کاملMechanism of increased respiration in an H+-ATPase-defective mutant of Corynebacterium glutamicum.
We previously reported that a spontaneous H(+)-ATPase-defective mutant of Corynebacterium glutamicum, F172-8, derived from C. glutamicum ATCC 14067, showed enhanced glucose consumption and respiration rates. To investigate the genome-based mechanism of enhanced respiration rate in such C. glutamicum mutants, A-1, an H(+)-ATPase-defective mutant derived from C. glutamicum ATCC 13032, which harbo...
متن کاملAnother unusual type of citric acid cycle enzyme in Helicobacter pylori: the malate:quinone oxidoreductase.
The only enzyme of the citric acid cycle for which no open reading frame (ORF) was found in the Helicobacter pylori genome is the NAD-dependent malate dehydrogenase. Here, it is shown that in this organism the oxidation of malate to oxaloacetate is catalyzed by a malate:quinone oxidoreductase (MQO). This flavin adenine dinucleotide-dependent membrane-associated enzyme donates electrons to quino...
متن کاملCharacterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum.
Transporters of the dicarboxylate amino acid-cation symporter family often mediate uptake of C(4)-dicarboxylates, such as succinate or l-malate, in bacteria. A member of this family, dicarboxylate transporter A (DctA) from Corynebacterium glutamicum, was characterized to catalyze uptake of the C(4)-dicarboxylates succinate, fumarate, and l-malate, which was inhibited by oxaloacetate, 2-oxogluta...
متن کاملPyruvate:quinone oxidoreductase in Corynebacterium glutamicum: molecular analysis of the pqo gene, significance of the enzyme, and phylogenetic aspects.
Corynebacterium glutamicum recently has been shown to possess pyruvate:quinone oxidoreductase (PQO), catalyzing the oxidative decarboxylation of pyruvate to acetate and CO2 with a quinone as the electron acceptor. Here, we analyze the expression of the C. glutamicum pqo gene, investigate the relevance of the PQO enzyme for growth and amino acid production, and perform phylogenetic studies. Expr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of biochemistry
دوره 254 2 شماره
صفحات -
تاریخ انتشار 1998